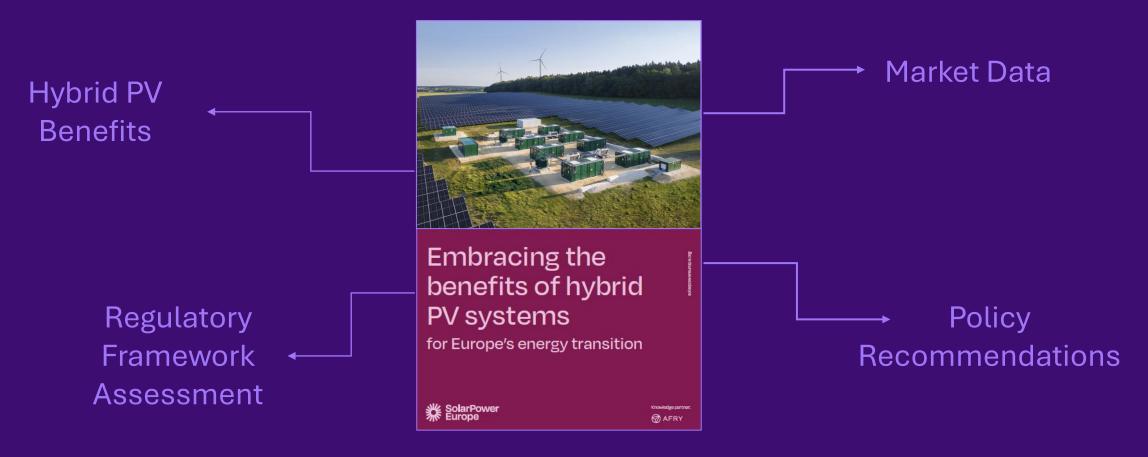


SOLARPOWER SUMMIT 2025WELCOME TO THE SOLAR FLEX ERA

LET'S FLEX ENERGY FINANCING TO REINFORCE THE HYBRIDS BUSINESS CASE

IET'S LEN

SOLARPOWER SUMMIT 2025

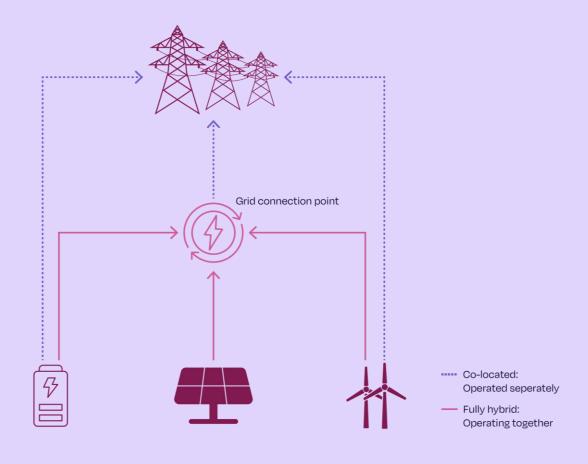


Moderator

SIMON DUPOND

Policy Advisor, SolarPower Europe

Embracing the benefits of Hybrid PV systems for Europe's energy transition



Defining Hybrid PV systems

Hybrid PV systems are **the combination of technologies in the same facility** which are sharing a **single grid connection access point**.

Two different structures can be observed:

- Co-located: The assets are operated independently, but share the grid connection point.
- **Fully hybrids:** The assets are operated jointly by the same entity, leading to an optimised usage of the grid connection point.

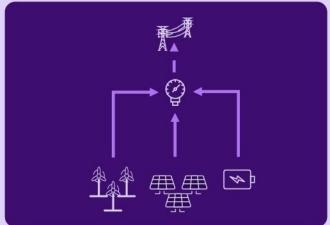
Defining Hybrid PV systems

Solar PV + Storage

Solar PV + Wind

SOLARPOWER SUMMIT 2025

FINDINGS ON THE
BENEFITS OF HYBRID
PV SYSTEMS

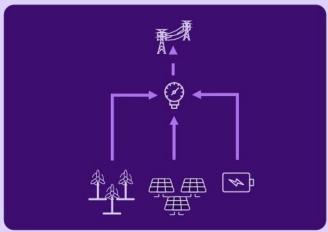

STEPHEN WOODHOUSE

Director, AFRY

Net-zero means a deep transformation

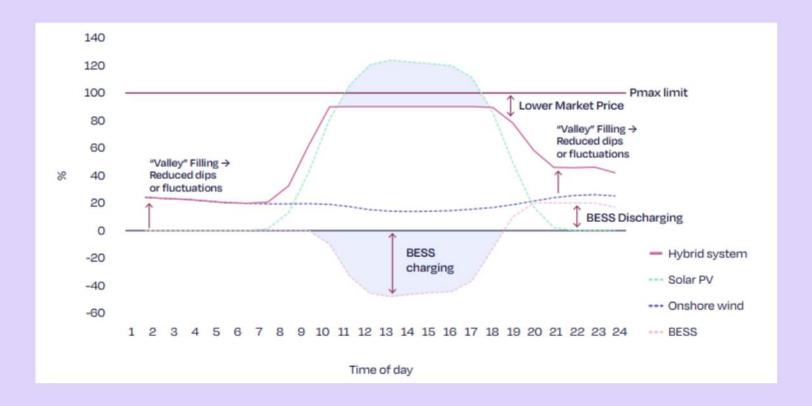
- Change is needed to integrate new RES capacity and accommodate new types of power demand as a lot of sectors electrify
- As demand and capacity on the system increase, we will eventually need to upgrade and expand our grid
- However, there are other solutions that can be used in the short term, but also in the long term, to increase renewable deployment and avoid grid congestion, by using the existing infrastructure more efficiently

Hybrids can help with the energy transition

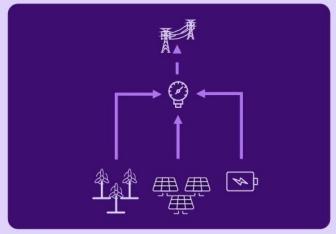

02 | IMPROVED USE OF STORAGE

Storage can be used to manage both system-wide and local curtailment. Allowing to withdraw from the gird can help take full advantage of the storage, which is part of a hybrid

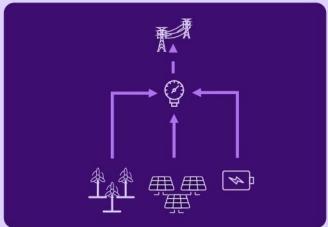
Less need for grid investment and potentially lower cost of capital for generation technologies



01 | MORE EFFICIENT USE OF EXISTING RESOURCES


With different generation technologies behind a grid connection point we can use land and grid more efficiently

With hybrids we can get the most out of our finite grid



How can we enable hybrids?

- Streamline the permitting process make it easier to amend production licenses and avoid double permitting
- Avoid strict requirements in terms of relative capacity sizing
- Allow withdrawing from the grid in the case of hybrids with storage
- Enable market participation on an equal footing hybrids should be in a position to participate in all markets, including ancillary services and capacity markets, as all other technologies

SOLARPOWER SUMMIT 2025

POLICY RECOMMENDATIONS

MATHILDE CATRYCKE

Senior EU Affairs Manager, Engie

Policy Recommendations

- 1. The EU and its Member States should recognise **hybrid solar systems** as key contributors to the EU's **energy security, competitiveness and decarbonisation goals.**
- 2. Regulators and grid operators should **improve grid connection procedures** for hybrid PV.
- 3. Member States should **improve permitting** for hybrid PV by implementing the streamlined procedures in the Renewable Energy Directive.
- 4. The EU and its Member States should ensure **support schemes** are **adapted** to hybrid PV projects.
- **5. Grid tariffs** need to be adapted to promote the **decentralisation** of energy systems and **better integration** of renewable energy sources with battery storage, **addressing** issues like **high connection fees** and **double charging** of storage assets..
- 6. Hybrid renewable projects should receive **Guarantees of Origin** for all renewable electricity **generated and stored**.

Support schemes should be adapted to Hybrid PV projects

Hybrid PV systems should have the opportunity to compete on equal terms with stand-alone PV in **traditional renewable energy auctions**, as is done in the United Kingdom.

RES Allocation Rounds (AR) in the UK

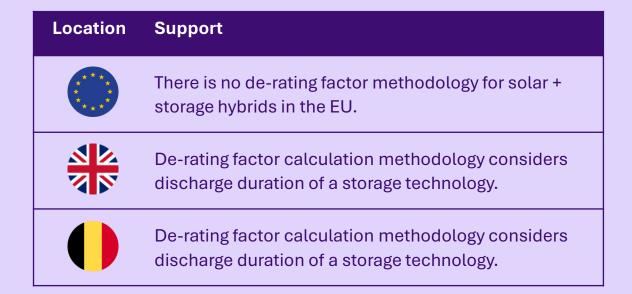
Member States should grant **CAPEX support** for storage under hybrid projects

Best practices

Country	Support
is:	Grant covering 40% of the battery's CAPEX
	Grant covering 20% of the battery's CAPEX
	Grant covering up to 50% of the battery's CAPEX

Support schemes should be adapted to Hybrid PV projects

Member States should allow **value stacking** for assets under support schemes


Capacity Markets should design and make use of adequate **de-rating factors** for **hybrids**

Innovation Auction in Germany

Minimum RES utilisation in Portugal

Support schemes should be adapted to Hybrid PV projects

CfD design must account for hybrid projects with storage:

By designing two-sided **CfDs as pay-as-produced contracts** where the energy is settled at **the point and time of generation** and not when exported to the grid.

The approach values the RES asset at the time of generation under the CfD, regardless of when electricity is dispatched to the grid.

GOs should be issued for all renewable electricity generated and stored

Refining the GO framework for stored electricity can support:

- **Grid flexibility**, by allowing batteries to provide ancillary services with certified renewable electricity
- **Decarbonisation**, by ensuring renewable energy used in CfDs and PPAs is properly certified

Neither the EU nor national regulations provide clear guidance on how to certify renewable energy once it has passed through a storage system.

Guillaume Gonzalez

Electricity market design expert,

DG COMP, European Commission

Mathilde Catrycke
Senior EU Affairs Manager,
Engie

Stephen Woodhouse

Director,

AFRY

Simon Dupond

Policy Advisor,
SolarPower Europe